Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

نویسندگان

  • Andreas Herr
  • Reinhard Fischer
چکیده

Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose.

Expression of the Aspergillus nidulans penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, respectively, was analyzed. The intergenic region carrying the divergently oriented promoters was fused in frame in both orientations to Escherichia coli lacZ and E. coli uidA reporter genes. Each construct permi...

متن کامل

Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis.

To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exh...

متن کامل

Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC.

The beta-lactam antibiotic penicillin is produced as an end product by some filamentous fungi only. It is synthesized from the amino acid precursors L-alpha-aminoadipic acid, L-cysteine, and L-valine. Previous data suggested that certain amino acids play a role in the regulation of its biosynthesis. Therefore, in this study the effects of externally added amino acids on both Aspergillus (Emeric...

متن کامل

Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production.

The biosynthesis of the beta-lactam antibiotic penicillin in the filamentous fungus Aspergillus nidulans is catalyzed by three enzymes that are encoded by the acvA, ipnA, and aatA genes. A variety of cis-acting DNA elements and regulatory factors form a complex regulatory network controlling these beta-lactam biosynthesis genes. Regulators involved include the CCAAT-binding complex AnCF and AnB...

متن کامل

The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development.

Secondary metabolism is commonly associated with morphological development in microorganisms, including fungi. We found that veA, a gene previously shown to control the Aspergillus nidulans sexual/asexual developmental ratio in response to light, also controls secondary metabolism. Specifically, veA regulates the expression of genes implicated in the synthesis of the mycotoxin sterigmatocystin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metabolic engineering

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014